(-1.436/x)=(7.32*10^(-6))/(x^8)

Simple and best practice solution for (-1.436/x)=(7.32*10^(-6))/(x^8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1.436/x)=(7.32*10^(-6))/(x^8) equation:


D( x )

x^8 = 0

x = 0

x^8 = 0

x^8 = 0

1*x^8 = 0 // : 1

x^8 = 0

x = 0

x = 0

x = 0

x in (-oo:0) U (0:+oo)

-1.436/x = (7.32*10^-6)/(x^8) // - (7.32*10^-6)/(x^8)

-1.436/x-((7.32*10^-6)/(x^8)) = 0

-1.436/x-7.32*10^-6*x^-8 = 0

-1.436*x^-1-0.00000732*x^-8 = 0

t_1 = x^-1

-0.00000732*t_1^8-1.436*t_1^1 = 0

-0.00000732*t_1^8-1.436*t_1 = 0

-t_1*(0.00000732*t_1^7+1.436) = 0

0.00000732*t_1^7 = -1.436 // : 0.00000732

t_1^7 = -196174.86338798

t_1^7 = -196174.86338798 // ^ 1/7

t_1 = -196174.86338798^(1/7)

-t_1 = 0

-1*t_1 = 0 // : -1

t_1 = 0

t_1 = -196174.86338798^(1/7)

x^-1+196174.86338798^(1/7) = 0

1*x^-1 = -196174.86338798^(1/7) // : 1

x^-1 = -196174.86338798^(1/7)

-1 < 0

1/(x^1) = -196174.86338798^(1/7) // * x^1

1 = -196174.86338798^(1/7)*x^1 // : -196174.86338798^(1/7)

1/(-196174.86338798^(1/7)) = x^1

x = 1/(-196174.86338798^(1/7))

t_1 = 0

x^-1+0 = 0

x^-1 = 0

1*x^-1 = 0 // : 1

x^-1 = 0

x należy do O

x = 1/(-196174.86338798^(1/7))

See similar equations:

| 8x-2x^2-1=0 | | x=x*2 | | -2x-2=x-1 | | x^(1/2)=0.55x | | 29=19+3x | | 14=5x-x^2 | | (x-6)(2x-6)=308 | | 6+5.6= | | 2x+3y=1912 | | x+1=-4-x | | 8(5-2x)=4x+21 | | 1/7x-16=1/6x-18 | | x+1=-4x | | ax(x+1)=bx^2 | | 2x^2-90x=5600 | | 2x^2-5x=288 | | 3cos(x-25)+2=0 | | -5.2x^2+24x-0.764=0 | | 9x-28=7 | | -X/42 | | -.5z=1.75-.25 | | 0.2x^2=0.11x | | .25k=8 | | 3(5x+4)-8=49 | | -48=4(2x-4) | | 2(2x-4)+10=42 | | 4*x=6x-3 | | 3(3x-4)=-30 | | 3x+2y+8y-x= | | 3x-37=2(4x+3)-8 | | 2(5x-5)+2=32 | | 2(4x+1)-6=5x-19 |

Equations solver categories